Repression of c-Myc and inhibition of G1 exit in cells conditionally overexpressing p300 that is not dependent on its histone acetyltransferase activity.
نویسندگان
چکیده
p300 and cAMP response element binding protein (CREB)-binding protein (CBP) are two highly homologous, conserved transcriptional coactivators, and histone acetyltransferases (HATs) that link chromatin remodeling with transcription. Cell transformation by viral oncogene products such as adenovirus E1A and SV40 large T antigen depends on their ability to inactivate p300 and CBP. To investigate the role of p300 in cell-cycle progression, we constructed stable rat cell lines, which conditionally overexpress p300 from a tetracycline-responsive promoter. When p300 was induced in these cells, serum-stimulated S-phase entry was significantly inhibited. The inhibition of S-phase induction was associated with down-regulation of c-Myc, but not of c-Fos or c-Jun. Simultaneous overexpression of c-Myc and p300 before serum stimulation reversed the inhibition of S-phase induction to a significant level, indicating that the inhibition of c-Myc to a large extent is responsible for the p300 inhibition of G1 exit. Similar studies with stable rat cell lines that overexpress a mutant p300, which lacks the HAT activity, showed that the intrinsic HAT activity of p300 is not required for the negative regulation of c-Myc or G1. These findings, and our previously published results (Kolli, S., Buchmann, A. M., Williams, J., Weitzman, S. & Thimmapaya, B. (2001) Proc. Natl. Acad. Sci. USA 98, 4646-4651), establish an important negative regulatory role for p300 in c-Myc expression that may be important in maintaining the cells in the G0/G1 phase of the cell cycle.
منابع مشابه
The adenoviral E1A N-terminal domain represses MYC transcription in human cancer cells by targeting both p300 and TRRAP and inhibiting MYC promoter acetylation of H3K18 and H4K16
Human cancers frequently arise from increased expression of proto-oncogenes, such as MYC and HER2. Understanding the cellular pathways regulating the transcription and expression of proto-oncogenes is important for targeted therapies for cancer treatment. Adenoviral (Ad) E1A 243R (243 aa residues) is a viral oncoprotein that interacts with key regulators of gene transcription and cell prolifera...
متن کاملTargeting p300 Addiction in CBP-Deficient Cancers Causes Synthetic Lethality by Apoptotic Cell Death due to Abrogation of MYC Expression.
UNLABELLED Loss-of-function mutations in the CBP/CREBBP gene, which encodes a histone acetyltransferase (HAT), are present in a variety of human tumors, including lung, bladder, gastric, and hematopoietic cancers. Consequently, development of a molecular targeting method capable of specifically killing CBP-deficient cancer cells would greatly improve cancer therapy. Functional screening of synt...
متن کاملAntisense-mediated depletion of p300 in human cells leads to premature G1 exit and up-regulation of c-MYC.
The cAMP-response element-binding protein (CREB)-binding protein and p300 are two highly conserved transcriptional coactivators and histone acetyltransferases that integrate signals from diverse signal transduction pathways in the nucleus and also link chromatin remodeling with transcription. In this report, we have examined the role of p300 in the control of the G(1) phase of the cell cycle in...
متن کاملHistone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo.
BACKGROUND Left ventricular (LV) remodeling after myocardial infarction is associated with hypertrophy of surviving myocytes and represents a major process that leads to heart failure. One of the intrinsic histone acetyltransferases, p300, serves as a coactivator of hypertrophy-responsive transcriptional factors such as a cardiac zinc finger protein GATA-4 and is involved in its hypertrophic st...
متن کاملDual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription.
The c-Myc oncoprotein (Myc) controls cell fate by regulating gene transcription in association with a DNA-binding partner, Max. While Max lacks a transcription regulatory domain, the N terminus of Myc contains a transcription activation domain (TAD) that recruits cofactor complexes containing the histone acetyltransferases (HATs) GCN5 and Tip60. Here, we report a novel functional interaction be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 16 شماره
صفحات -
تاریخ انتشار 2003